
7/11/2016

1

Deep Learning Applied
NEURAL ARCHITECTURES FOR THE SOCIAL SCIENCES
ALEXANDER G. ORORBIA II
THE PENNSYLVANIA STATE UNIVERSITY
SBP-BRIMS TUTORIAL 2016 

Objectives
 Motivations

 Why do we want to use neural architectures?

 Some preliminaries
 A crash course in necessary mathematical basics

 Neural architectures
 Basic relevant topologies

 Automatic differentiation: calculating parameter gradients
 Parameter optimization
 Hyper-parameter optimization
 Data pre-processing (text)
 An application: Automatic content coding
 Resources & references
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Motivations
WHY DO WE WANT TO USE NEURAL ARCHITECTURES?

Why? Previous Results

 Make for a good candidate learning algorithm
 Evidence of layered architectures in neuro-scientific 

research (i.e., cortical structures)
 Applied circuit theory & efficient representations of 

complex functions (Hastad, 1987)
 Can capture may factors of variation in data

 Early success of specialized yet deep architectures 
(i.e., Convolutional Networks, NeoCognitron)

 Local, unsupervised pre-training puts SGD-based 
models near good basins of attraction 
 Often escape poor local minima that plague bad 

random initializations
 Works well in supervised & semi-supervised contexts http://cs.brown.edu/~tld/projects/cortex/
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Why? Feature Abstraction

 Raw features, such as pixel values of image, viewed as “low-
level” representation of data
 Can be complex & high-dimensional
 Observed variables (“nature”, observed/recorded data)

 Abstract representations = layers of feature detectors
 Latent /unobserved variables that describe observed variables 

 Capture key aspects of data’s underlying stochastic process 

 Many concepts can be represented as (strict) hierarchies (such as a 
taxonomy of species)  goal of model is to “learn” a plausible, 
structured unknown hierarchy 

 Idea:  extracting “structure” from “unstructured”/messy data

 Automatic feature engineering/crafting

http://www.slideshare.net/roelofp/2014-1021-sicsdlnlpg

Object Recognition: Big Brother Net is watching 
you…and you over there…and you right there!
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What this tutorial should give you?

 Levels of understanding:
 The Driver: An informed user capable of effectively applying neural 

architectures to real-world data-driven problems
 Goal: Solve real-world problems using neural architectures

 The Engineer: Works at the level of implementation, develops new algorithms 
and architectures
 Goal: Design new models & learning algorithms

 The Theorist: Works at most abstract level, understanding performance in the 
limit, proving convergence, developing theoretical results
 Goal: Develop theory to explain strengths & weaknesses of learning algorithms

 This tutorial aims to make you The Driver
 Plenty of resources/references in these slides to go down “deeper” if you like 

(i.e., to become an The Engineer or The Theorist)

Preliminaries
THE BASICS OF WHAT YOU NEED TO “DRIVE” NEURAL ARCHITECTURES
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Matrix Addition/Subtraction

 This tutorial assumes column-major matrices (for efficiency)
 Add/subtract operators follow basic properties of normal 

add/subtract
 Matrix A + Matrix B is computed element-wise

0.5 -0.7
-0.69 1.8

0.5 -0.7
-0.69 1.8

.5 + .5 = 1.0 -.7 - .7 = -1.4
-.69 - .69 = -1.38 1.8 + 1.8 = 3.6+ =

Matrix-Matrix Multiply (Outer 
Product)

 Matrix-Matrix multiply (outer product)
 A usual workhorse of learning algorithms
 Vectorizes sums of products

0.5 -0.7
-0.69 1.8

0.5 -0.7
-0.69 1.8

(.5 * .5) + (-.7 * -.69) (.5 * -.7) + (-.7 * 1.8)
(-.69 * .5) + (1.8 * -.69) (-.69 * -.7) + (1.8 * 1.8)* =
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Hadamard Product

 Multiply each A(I, j) to each corresponding B(I, j)
 Element-wise multiplication

0.5 -0.7
-0.69 1.8

0.5 -0.7
-0.69 1.8

.5 * .5 = .25 .49
-.69 * -.69 = .4761 1.8 * 1.8 = 3.24*@ =

Elementwise Functions
 Applied to each element (i, j) of matrix argument

 Identity:  ߮ v ൌ v

 Logistic Sigmoid:  ߮ v ൌ ߪ ݒ ൌ ଵ

ଵା௘షೡ

 Linear Rectifier:  ߮ v ൌ max	ሺ0, vሻ

 Softmax:  ߮ ௖ݒ ൌ ௘షೡ೎

∑ ௘షೡ೎೎స	಴
೎సభ

0.5 -0.7
-0.69 1.8

(1.0) = 1 ሺ-1.4) = 0

ሺ-1.38) = 0 ሺ3.6) = 1.8
=( )
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Neural Architectures
DESIGN CHOICES & WHAT THESE GET YOU

An organic take on a neural system 
(Rummelhart, Hinton, & McClelland, 
1986).
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The Processing Element (PE)

 Basic unit is integrate-then-fire “neuron”
 Input: Takes in outputs of all its parents in a directed graph

 Integrates all inputs via summation (pre-activation)

 Output: Non-linearity ߮ v applied to pre-activation (activation)

 PE Types
 Sensor:  merely takes in input and passes it along (observed variable)

 Processor: transforms inputs to an output signal (latent variables)

 Actuator: merely displays “action” or decision (output variables), but could 
be an action such as move a robot arm left 10 degrees…

෍

૙࢝

૚࢝

૛࢝

૙࢞

૚࢞

૛࢞

࣐ H
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෍
૚࢞૚࢝ ൌ ૚ࢠ ࣐ H

෍ ࣐

૙࢝

૚࢝

૛࢝
ࢆ ൌ ૙ࢠ ൅ ૚ࢠ ൅ ૛ࢠ

H
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૙࢝

૚࢝

૛࢝

෍ ࣐ H
ࡴ ൌ ሻࢆሺ࣐

Now Let Us Vectorize This! (1)

:૙ࢎ * = ൅		൅	ሻ

This calculates activation value of single 
hidden unit that is connected to 3 sensors.
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Now Let Us Vectorize This! (2)

:૙ࢎ * = ൅		൅	ሻ

൅		൅	ሻ

This vectorization easily generalizes to 
multiple sensors feeding into multiple units.

:૚ࢎ

Now Let Us Vectorize This! (3)

:૙ࢎ * = ൅	ሻ ൅	ሻ

൅	ሻ ൅	ሻ

This vectorization is also important for 
formulating mini-batches.
(Good for GPU-based processing.)

:૚ࢎ
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Combining PEs Into Processing 
Layers

 A complex, self-organizing system is built by combining 
multiple PEs
 For simplicity, organized in blocks or layers

 No intra-layer connections, i.e., we do not model pairwise 
correlations

 Each layer i of PEs processes activations of layer i-1
 Repeat process of last few slides, but each h becomes 

“data” input to layer(s) above
 Repeat until output layer (actuators) is reached

Composing Layers: Feedforward 
Architectures

 Stack several layers to craft a simple, chain-like architecture
 (At least) one input layer

 (At least) one output layer

 0 or more processing (hidden) layers

 Feedforward refers directed nature of graph
 No self-loops, edges not bi-directional

 Inference is simply a sequence of matrix multiplies (& application of non-
linear operators)

 Information propagated forward (bottom-up)
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Architecture: Linear Chain (1)

 Simple chain composed of 1 input layer, 0 or more 
processing layers, & 1 output layer
 Multi-layer perceptron

 Maps input 1 input-vector space to output target vector-space 
(i.e., labels)

 Very common
 Linear/logistic regression (0 hidden layers)

 1 output unit (identity activation or sigmoidal activation)

 Support Vector Machine (0 hidden layers)
 Linear kernel when using multi-class hinge loss (and L2 penalty)

 Multi-layer perceptron (1 or more hidden processing layers)

Architecture: Linear Chain (2)

 For non-linearly separable data
 Add non-linearity to activations

 Linear threshold

 Ex:  Logistic Sigmoid:

h ൌ ߪ ݒ ൌ
1

1 ൅ ݁ିௐ௩ା௕ , .ݏܾܽ݅	݄݁ݐ	ݏ݅	ܾ

 Multiple layers could lead to more “expressive” 
architectures

 Universal Approximators (Hornik, Stinchcombe, 
& White, 1989)

Multilayer ANN Architecture.
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Architecture: Multi-Input

 Maps n-tuples of feature vectors to single target vectors
 If softmax output units are used, approximately learns a 

conditional model:
 p(݅݊ݐݑ݌݊݅ |ݐݑ݌଴, … , ݅݊ݐݑ݌ேିଵ), where ݅݊ݐݑ݌௡ is a vector of 

features of N total input vectors (n indexes this space)

Architecture: Multi-Output

 Also known as multi-task learning
 At some point, branches such that there are multiple, disjoint 

output layers multiple tasks share same representation

 Multi-objective loss function

 Bonus: Can use auxiliary tasks to regularize task you care about!
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Complex Branching Architectures

 Architectures can be very complex
 Combine multi-input, multi-output, and linear chains to create 

very deep models 

 Can allow for learning signals to be injected @ various levels

 Examples:
 GoogLeNet

 Deep Residual Networks (skip every 2 layers)

 Deep Highway Networks (skip variable layers through gating)
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Automatic Differentiation
HOW PARAMETER GRADIENTS ARE CALCULATED

Objective Functions

 Mean‐squared	error

 is one-hot encoding of y,  is output of neural architecture

 Cross‐entropy

 Often much better than mean-squared error in practice

 Categorical	cross‐entropy

 Can be derived from standard cross-entropy in case of one-hot vectors

 Equivalent to minimizing negative log likelihood

 And	many	others	ሺhinge	loss,	etc.ሻ
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Run It in Reverse:  Back-
Propagation of Errors

 Take error at output & prop backwards through network
 Derivatives of objective w/ respect to variables

 Similar process for temporal models (i.e., recurrent neural nets)

 Good for discriminative training (layers of representation) 
(Rumelhart, Hinton, & Williams, 1986)

 Problem:  the gradients, they vanish?! (Hochreiter, 1998)
 In practice:  1-2 hidden layers was good enough!

 Solution: Use better activations (i.e., linear rectifier)

Reverse Mode Differentiation

 Application of the chain-rule from calculus
 Can view this at lowest level—computation graph

 Follow graph of operators (plus, multiply, parameter, variable, etc.) & 
get partial derivatives using sub-rules (sum rule, product rule, etc.)

 Complex but highly flexible

 Can view this at level of PEs—neuronal graph
 Follow graph of PEs

 Limited flexibility, but simple to understand when starting off

 This tutorial shall follow latter approach for pedagogical purposes
 Need another tutorial to fully develop arbitrary computation graphs
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The Vanishing Gradient Problem

 Solving credit assignment problem with back-propagation too 
difficult
 Difficult to know how much importance to accord to remote inputs 

(Bengio et al., 1994)
 Information passed through a chain of multiplications back through 

network
 Any value slightly less than 1 in hadamard product, and derivative signal 

quickly shrinks to useless values

 Learning long-term dependencies in temporal sequences becomes 
near impossible

 Complementary problem: Exploding gradients
 Any value greater than 1 in hadamard, derivative signal increases 

dramatically (numerical overflow)
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Parameter Optimization
HOW TO USE GRADIENTS TO UPDATE THE ARCHITECTURE

Optimization Schemes

 Steepest (mini-batch) gradient descent
 Use an estimator (i.e., back-prop) to get gradient, update parameters

 Also referred to as stochastic gradient descent (SGD)

 Parameter initialization
 Modifications:

 Momentum

 Regularization terms (L1, L2, DataGrad)

 Gradient clipping & parameter renormalization

 Drop-out

 Alternative optimizers
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Parameter Initialization

 Simple distributional schemes
 Fan-in Uniform

 Uniform distribution scaled by square root of (2 / # inputs to layer)

 Gaussian
 Gaussian distribution centered @ 0 (usually w/ variance <= 1)

 Fan-in Gaussian
 Gaussian distribution scaled by square root of (2 / # inputs to layer)

Steepest Gradient Descent
 Simplest update rule
 Combine with early stopping (tracking loss/error on validation 

set)
 A simple form of regularization (as weights will be smaller)



7/11/2016

28

Simple Momentum

 Maintains a rolling average of previous gradients
 Smooths descent of loss minimization algorithm

 Many variants: Nesterov’s Accelerated Gradient, etc.

Regularization:  L2 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html
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Regularization:  L1 Penalty

http://neuralnetworksanddeeplearning.com/chap3.html

Regularization:  DataGrad
Penalty (1)

 Blind-spot problem—can trick neural nets into making 
incorrect prediction by perturbing input data 
 Prominent in images

 Coined “adversarial” samples

 Can employ methods for building robustness against 
adversarial samples into any data problem
 Can improve generalization

 Similar to data augmentation (creating artificial additional 
images to increase data size)

 Potentially “sees” more of the underlying data manifold

 DataGrad: an “adversarial” prior (Ororbia et al., 2016)
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Regularization:  DataGrad
Penalty (2)

Gradient Clipping & Parameter 
Renormalization

 Largely resolves exploding gradients problem
 Simply threshold magnitudes of each dimension of gradient to 

some reasonable value (i.e., 1 or 5)

 Can combine this with other tricks (such as “skipping over” bad 
gradients)

 Track norm of parameters and rescale by normalizing values of 
gradient by norm
 Must cross-validate norm threshold
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Drop-out
 Each iteration (within an epoch), simply omit some units with 

a given probability (binary masks)
 At inference time, simply multiply activations by probability

 In single hidden layer model, equivalent to Bayesian model 
averaging

 A form of architectural regularization
 Controls for overfitting (for models with many parameters)

Other Optimizers

http://cs231n.github.io/neural-networks-3/#hyper
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Hyper-parameter Optimization
HOW TO TUNE A LEARNING ARCHITECTURE

Manual & Grid-Search

 Manual Search
 Explore a few configurations, based on literature/heuristics
 Select lowest validation loss configuration

 Grid Search
 Compose an n-dimensional hypercube, where along each axis is a 

hyper-parameter (length determined by max & min values to 
explore)

 Exhaustively calculate loss/error for each configuration (or 
combination of meta-parameter values) in hypercube
 Choose lowest error/minimal loss configuration as optimal model
 Loss/error is calculated on a held-out validation/development set (or in 

held-out set in cross-fold validation schemes)

 Will ultimately find optimal model (given coarseness of grid-search), 
but will take a really long time
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Random Search

 Draw k sample configurations from hypercube & calculate 
validation loss for each (w/o replacement)
 Repeat T trials, can use optimal of each trial to inform 

subsequent trials

 Can “guide” or “target” next set of random samples based on 
best last found point

 A more stochastic search

 Surprisingly effective, moreso than manual search & faster 
than grid search

Bayesian Optimization: Meta 
Machine Learning

 Use machine learning to do your research for you…
 Sequential Model Optimization (SMO)
 Gaussian Processes for surface-response modeling
 Gradient-based: Use another neural network

 How do we tune this higher-level parametric model?

 Meta-meta-meta-….-machine learning??

 High-level idea:
 Build a meta-model (with some prior that encodes intuition about hyper-

parameter space)
 Draw samples from space (i.e., run a few configurations of your model)
 Update your meta-model using these samples
 Your meta-model selects next best point to evaluate

 Balancing criterion such as minimal error and minimal compute time
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Data Pre-processing
HOW TO PREPARE DATA FOR TRAINING A NEURAL ARCHITECTURE

Process of Vectorization

 Feature transformations
 Standardization (0 mean, unit variance)
 Re-scaling (to range of [0,1])

 Surface statistics representation, or Bag of Words (BOW)
 Binary occurrence (multi-hot vector)
 Term frequency
 Term Frequency – Inverse Document Frequency (TF-IDF)

 Context window modeling (beyond scope of this tutorial)
 Encode a target word and its surrounding context as a multi-hot vector
 Word2Vec:  Skip-Gram, Continuous Bag of Words (CBOW)

 Sequence window modeling (beyond scope of this tutorial)
 Encode a sequence or ordered inputs as a 3D tensor, or a vector of 

matrices, where each matrix is a vector of one-hot encodings
 Good for temporal models like recurrent neural architectures
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BOW Modeling (Text)

 Process:
 Apply any string transforms (lower-casing, stemming, stop-word 

removal)

 Construct a dictionary V of unique symbols in corpus mapped 
to a unique integer [0, |V|-1]

 For each document, construct a vector, filling in each index i
with a number if symbol at i occurs in dictionary
 Fill in slot with 1  binary presence, frequency in document  term 

counts TF

 Convert to TF-IDF or log(1 + TF) if real-valued representation desired

Context Window Modeling (Text)

 As opposed to BOW modeling, slide a window of fixed or variable 
size across each document, encoding each word & its surrounding 
context into multi-hot binary vectors
 E.g. “The cat sat on the mat.” – target word = “sat”, left context (2) = 

“The cat”, right context (3) = “on the”

 Train model to predict target word given context or vice versa

 Can combine this with word-embeddings (from word2vec or GloVE, for 
example)



7/11/2016

36

An Application: Automatic 
Content Coding
PUTTING IT TOGETHER IN AN APPLICATION

Content Coding Setup

 From a machine learning perspective, may be posed as a 
classification problem
 Becomes semi-supervised at scale (i.e., when you have lots and 

lots of documents/texts)

 General approach:
 1) Come up with themes/categories, starting off as usual

 2) Take a representative sample & code it manually

 3) Fit a model to both annotated & non-annotated documents

 For labeled dataset ܦ௧௥௔௜௡
 D-dimensional pattern vectors : 	ොݒ ∈ ሺݒ଴, ,ଵݒ … , ஽ሻݒ with C-

dimensional label vectors ݕො	 ∈ ሺݕ଴, ,ଵݕ … , ஼ሻݕ
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The (Neural) Modeling Paradigm

 It’s a matter of posing the problem
 What is the low-level representation of your sample? (i.e., low-

level feature vectors)
 Is there an output we are interested in?

 Regression: a real-valued target

 Categorization: a multi-class/decision target

 How much data do you have?
 More data is better! (MNIST is 60K)
 Only a small sample? Go with Bayesian Neural Networks!

 What kind of hardware do you have?
 Multi-CPU settings
 GPUs

Semi-supervised Neural 
Architecture

 We design a multi-objective optimization problem:
 ܮ ,ݔ ,ݕ ݑ ൌ 	ߛ ∗ ܮ	 ,ݔ ݕ ൅ 	ߚ ∗ ߛ ሻ, settingݑሺܮ ߚ & 1 = = (0,1]

 We will demo a simple approach: Entropy-Regularization (i.e., self-
training)
 Use a deep rectifier network, with drop-out, trained using its own 

predictions for unlabeled samples

 Anneal weight ߚ	 applied to unlabeled loss function

 Experiment for this tutorial: performance as function of proportion of 
labeled samples
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Some Demo Results
CNAE-9 Supervised Semi-Supervised

( = 0.15)
25 % Labeled 0.1712963 0.13425928

75 % Labeled 0.05092591 0.0462963

Fully Labeled 0.037037015 N/A

LETTERS Supervised Semi-Supervised
( = 0.15)

25 % Labeled 0.13046736 0.11822045

75 % Labeled 0.07398152 0.091477156

Fully Labeled 0.075231194 N/A

https://github.com/ago109/SBP-BRIMS-2016-Tutorial.git

WEBKB text classification performance.

Stanford OCR performance.

CAPTCHA character categorization performance.

76
(Ororbia et al., 
2015, ECML)

Note: SBEN & 
HSDA were 
trained greedily.
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CAPTCHA:  Online error (next 1000 samples) vs. iteration.  SBEN & HSDA trained with BU algorithm.

Reaches 31.9% 
error

Reaches 35.6% 
error

Reaches 32.7% 
error

(Ororbia et al., 
2015, ECML)

Ways to Improve Model

 More data (especially more labeled samples)
 Use drop-out
 Try different number of hidden layers & sizes
 Grid-search learning rate and ߚ

 Anneal ߚ (low at start, high towards end)

 Anneal learning rate (low at towards end)

 Use a different optimizer (i.e., AdaDelta, AdaGrad, RMSProp, etc.)
 Adapt learning rate automatically
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Other Approaches

 Entropy-Regularization is only a simple neural approach
 More principled, joint modeling frameworks

 Deep hybrid models (Ororbia et al., 2015….)

 Semi-supervised Ladder Networks

 Manifold Tangent Classifier

 Do not have to use neural models, sometimes simpler is better…
 Transductive SVMs (use test set in training)

 Self-training SVMs ((via entropy regularization)

 Naïve Bayes via Expectation Maximization (McCallum …)

Questions?
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Resource & References
FOR FURTHER, PERSONAL EXPLORATION
(CURRENTLY UPDATING…)

Resources

 Deep Learning Hub:
 http://deeplearning.net

 Deep Learning Book (MIT Press): 
 http://www.deeplearningbook.org/

 Deep Learning frameworks:
 Theano (has automatic differentiation built-in naturally)

 http://deeplearning.net/software/theano/

 TensorFlow
 https://www.tensorflow.org

 Keras (good for starting out)
 http://keras.io
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