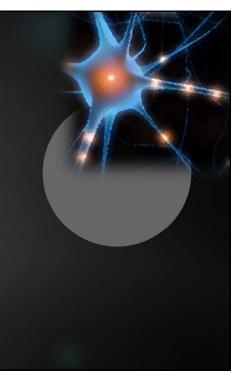
Deep Learning Applied

SBP-BRIMS TUTORIAL 2016

Objectives

- Motivations
 - ▶ Why do we want to use neural architectures?
- Some preliminaries
 - A crash course in necessary mathematical basics
- Neural architectures
 - ► Basic relevant topologies
- Automatic differentiation: calculating parameter gradients
- Parameter optimization
- ► Hyper-parameter optimization
- Data pre-processing (text)
- An application: Automatic content coding
- Resources & references

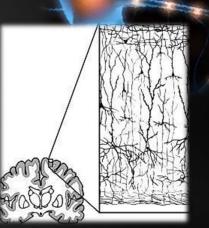


Motivations

WHY DO WE WANT TO USE NEURAL ARCHITECTURES?

Why? Previous Results

- Make for a good candidate learning algorithm
 - Evidence of layered architectures in neuro-scientific research (i.e., cortical structures)
- Applied circuit theory & efficient representations of complex functions (Hastad, 1987)
 - Can capture may factors of variation in data
- Early success of specialized yet deep architectures (i.e., Convolutional Networks, NeoCognitron)
- Local, unsupervised pre-training puts SGD-based models near good basins of attraction
 - Often escape poor local minima that plague bad random initializations
 - Works well in supervised & semi-supervised contexts

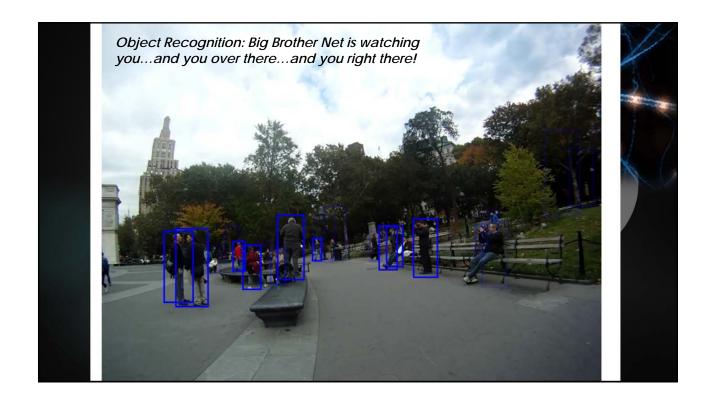


http://cs.brown.edu/~tld/projects/cortex/

http://www.slideshare.net/roelofp/2014-1021-sicsdlnlpg

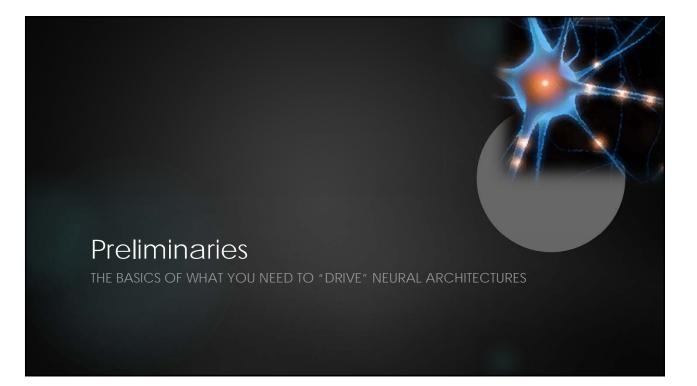
Why? Feature Abstraction

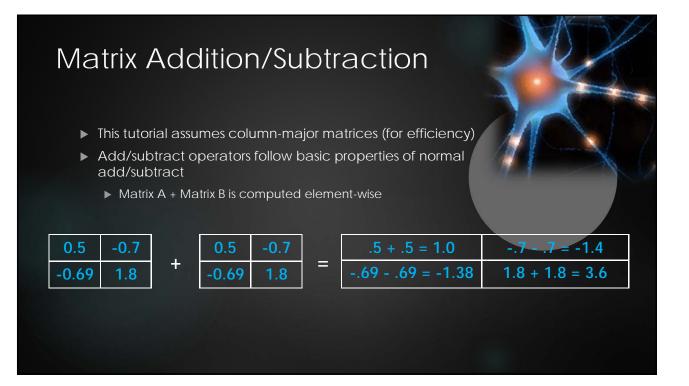
- Raw features, such as pixel values of image, viewed as "lowlevel" representation of data
 - Can be complex & high-dimensional
 - Observed variables ("nature", observed/recorded data)
- Abstract representations = layers of feature detectors
 - Latent /unobserved variables that describe observed variables
 - Capture key aspects of data's underlying stochastic process
 - Many concepts can be represented as (strict) hierarchies (such as a taxonomy of species) → goal of model is to "learn" a plausible, structured unknown hierarchy
 - ▶ Idea: extracting "structure" from "unstructured"/messy data
- Automatic feature engineering/crafting

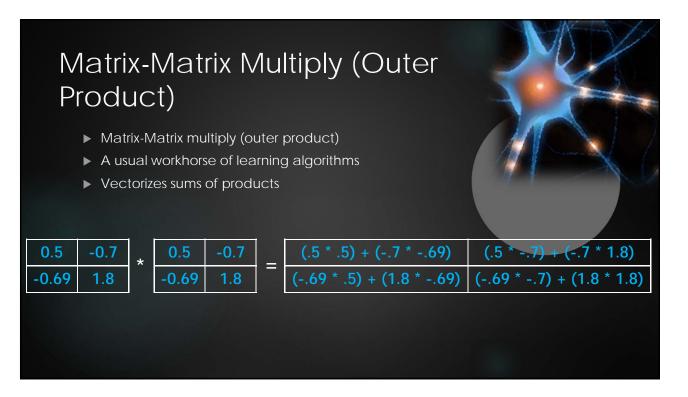


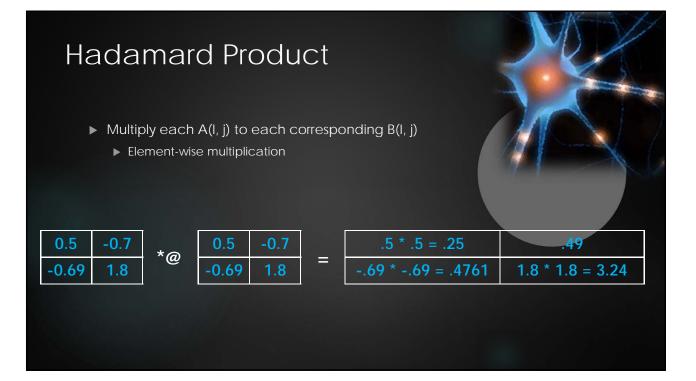
What this tutorial should give you?

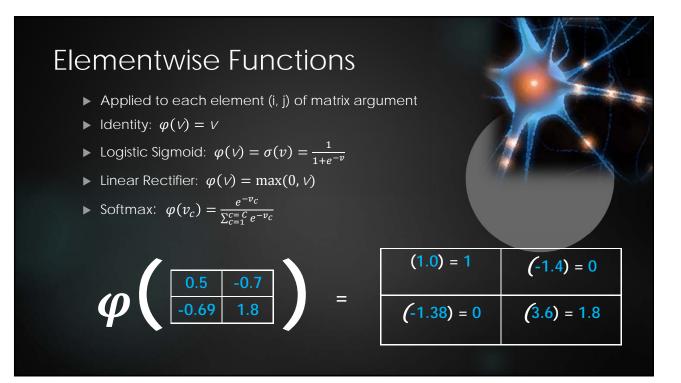
- Levels of understanding:
 - The Driver: An informed user capable of effectively applying neural architectures to real-world data-driven problems
 - ► Goal: Solve real-world problems using neural architectures
 - The Engineer. Works at the level of implementation, develops new algorithms and architectures
 - ► Goal: Design new models & learning algorithms
 - The Theorist: Works at most abstract level, understanding performance in the limit, proving convergence, developing theoretical results
 - ▶ Goal: Develop theory to explain strengths & weaknesses of learning algorithms
- ▶ This tutorial aims to make you *The Driver*
 - Plenty of resources/references in these slides to go down "deeper" if you like (i.e., to become an *The Engineer* or *The Theorist*)

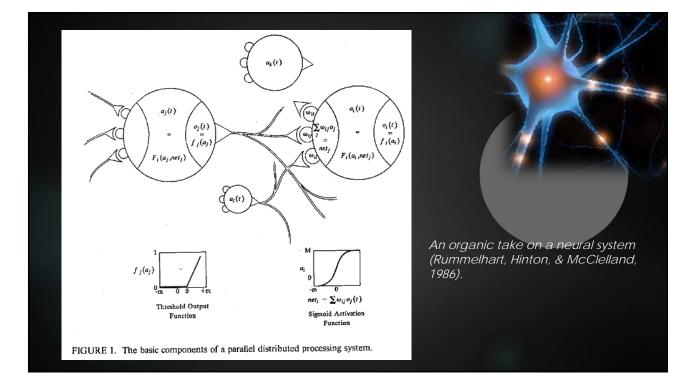






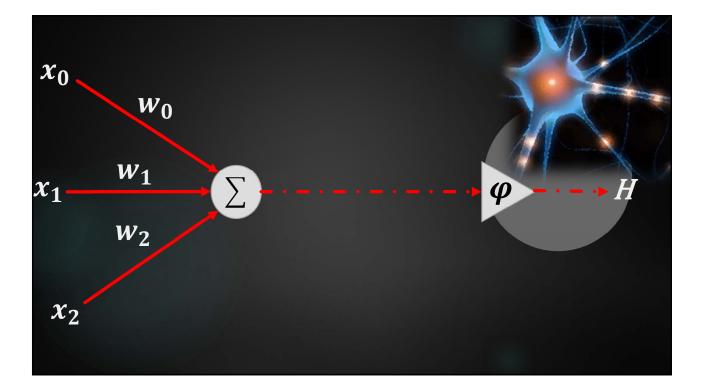


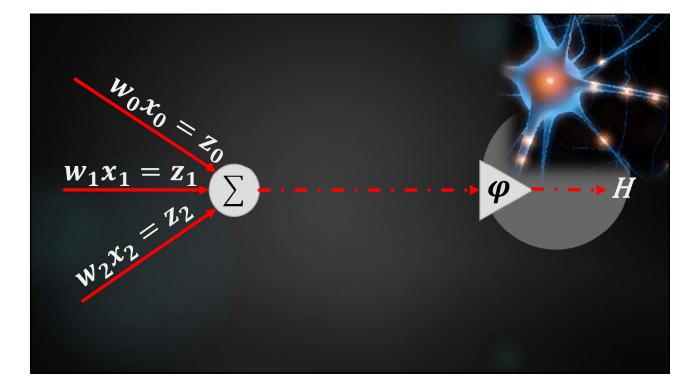


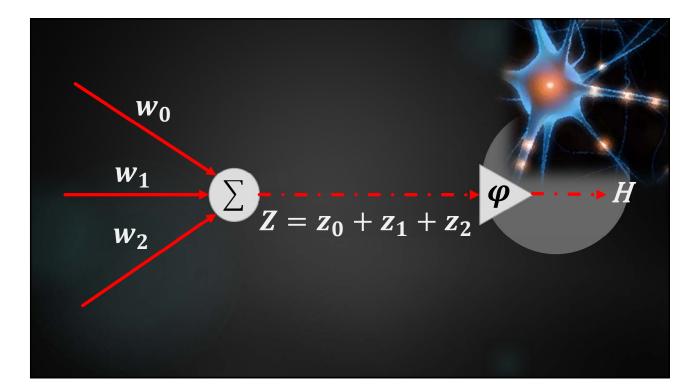


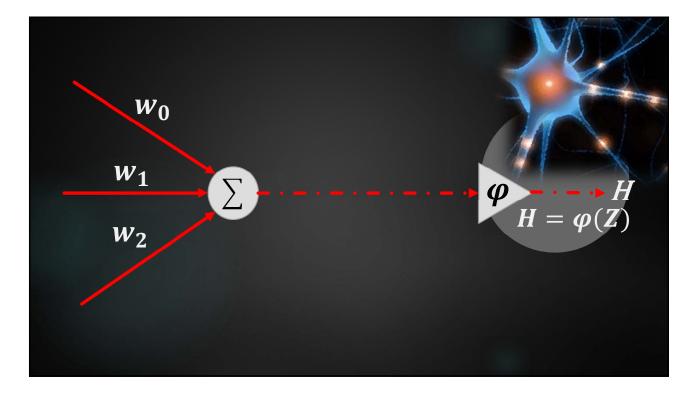
The Processing Element (PE)

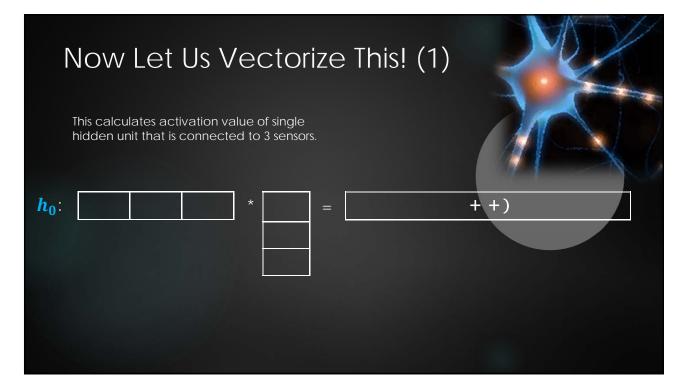
- Basic unit is integrate-then-fire "neuron"
 - ▶ Input: Takes in outputs of all its parents in a directed graph
 - Integrates all inputs via summation (pre-activation)
 - Output: Non-linearity $\varphi(v)$ applied to pre-activation (activation)
 - ► PE Types
 - Sensor: merely takes in input and passes it along (observed variable)
 - Processor: transforms inputs to an output signal (latent variables)
 - Actuator: merely displays "action" or decision (output variables), but could be an action such as move a robot arm left 10 degrees...

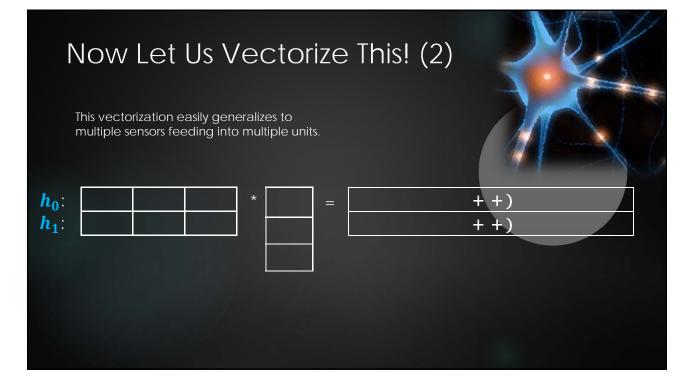


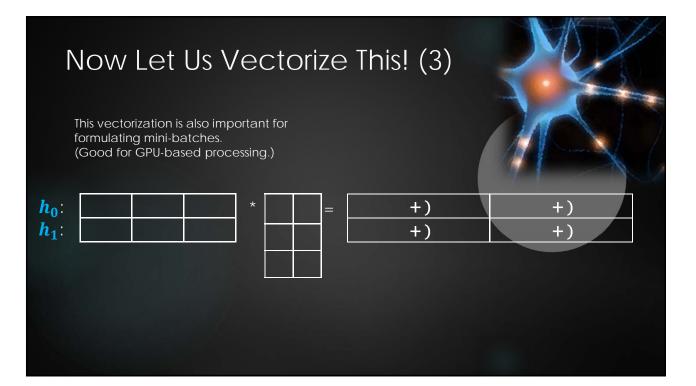












Combining PEs Into Processing Layers

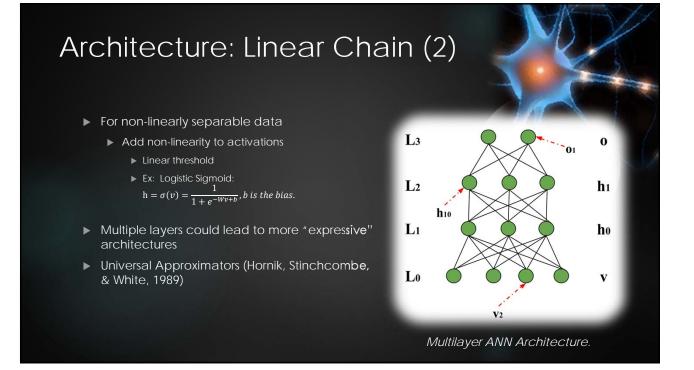
- A complex, self-organizing system is built by combining multiple PEs
 - ► For simplicity, organized in blocks or layers
 - No intra-layer connections, i.e., we do not model pairwise correlations
- ▶ Each layer *i* of PEs processes activations of layer *i*-1
- Repeat process of last few slides, but each h becomes "data" input to layer(s) above
 - Repeat until output layer (actuators) is reached

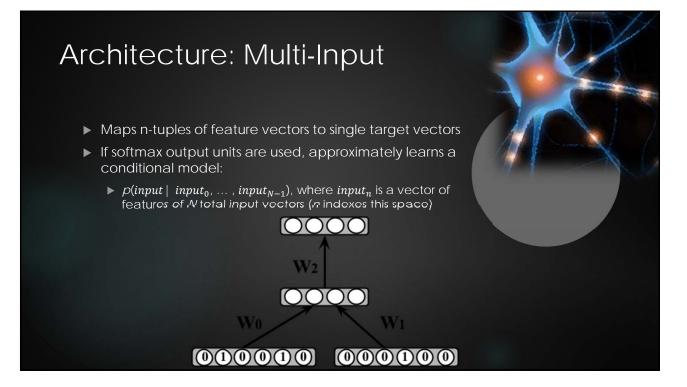
Composing Layers: Feedforward Architectures

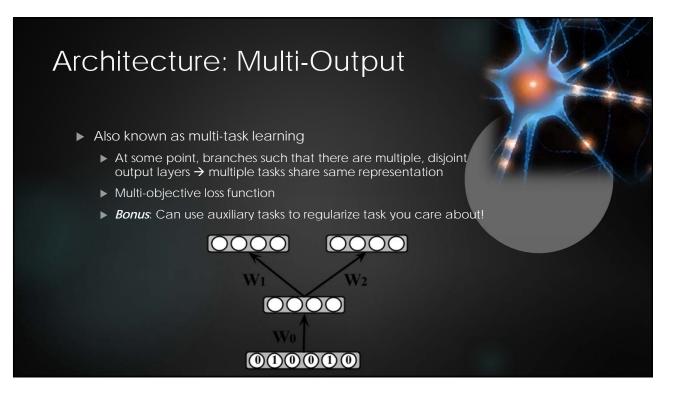
- Stack several layers to craft a simple, chain-like architecture
 - ► (At least) one input layer
 - ▶ (At least) one output layer
 - ▶ 0 or more processing (hidden) layers
- Feedforward refers directed nature of graph
 - ▶ No self-loops, edges not bi-directional
 - Inference is simply a sequence of matrix multiplies (& application of nonlinear operators)
- Information propagated forward (bottom-up)

Architecture: Linear Chain (1)

- Simple chain composed of 1 input layer, 0 or more processing layers, & 1 output layer
 - Multi-layer perceptron
 - Maps input 1 input-vector space to output target vector-space (i.e., labels)
- Very common
 - Linear/logistic regression (0 hidden layers)
 - ▶ 1 output unit (identity activation or sigmoidal activation)
 - Support Vector Machine (0 hidden layers)
 - Linear kernel when using multi-class hinge loss (and L2 penalty)
 - Multi-layer perceptron (1 or more hidden processing layers)

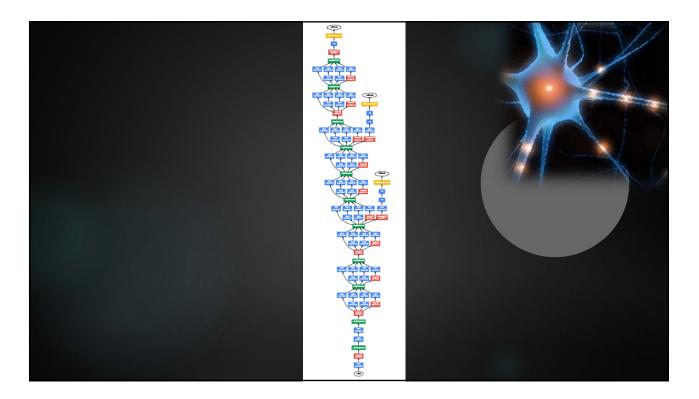






Complex Branching Architectures

- Architectures can be very complex
 - Combine multi-input, multi-output, and linear chains to create very deep models
 - Can allow for learning signals to be injected @ various levels
 - ► Examples:
 - GoogLeNet
 - Deep Residual Networks (skip every 2 layers)
 - Deep Highway Networks (skip variable layers through gating)



Automatic Differentiation

HOW PARAMETER GRADIENTS ARE CALCULATED

Objective Functions

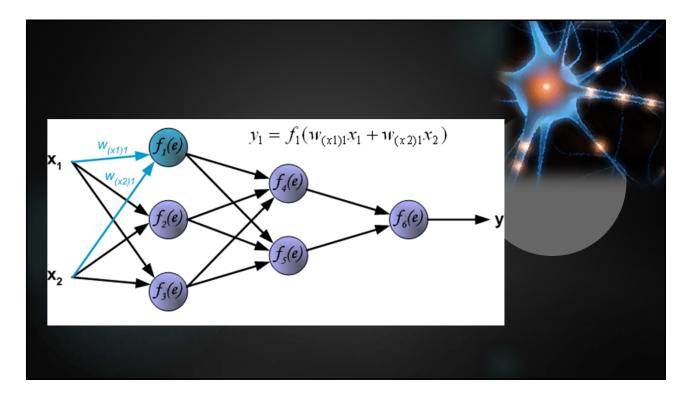
- Mean-squared error
 - ▶ is one-hot encoding of y, is output of neural architecture
- Cross-entropy
 - ► Often much better than mean-squared error in practice
- Categorical cross-entropy
 - Can be derived from standard cross-entropy in case of one-hot vectors
 - ► Equivalent to minimizing negative log likelihood
- ► And many others (hinge loss, etc.)

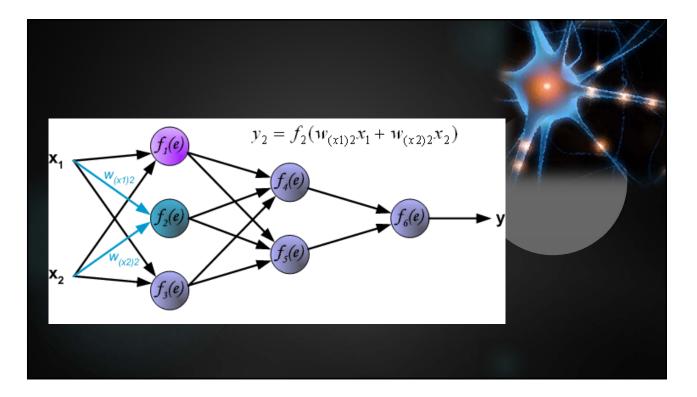
Run It in Reverse: Back-Propagation of Errors

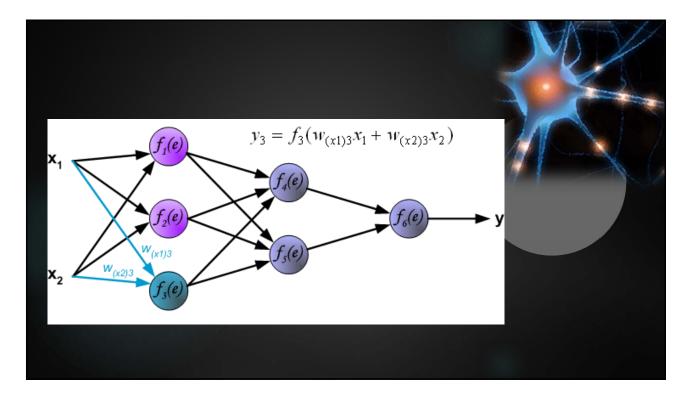
- Take error at output & prop backwards through network
 - Derivatives of objective w/ respect to variables
 - Similar process for temporal models (i.e., recurrent neural nets)
 - Good for discriminative training (layers of representation) (Rumelhart, Hinton, & Williams, 1986)
- ▶ Problem: the gradients, they vanish?! (Hochreiter, 1998)
 - ▶ In practice: 1-2 hidden layers was good enough!
 - Solution: Use better activations (i.e., linear rectifier)

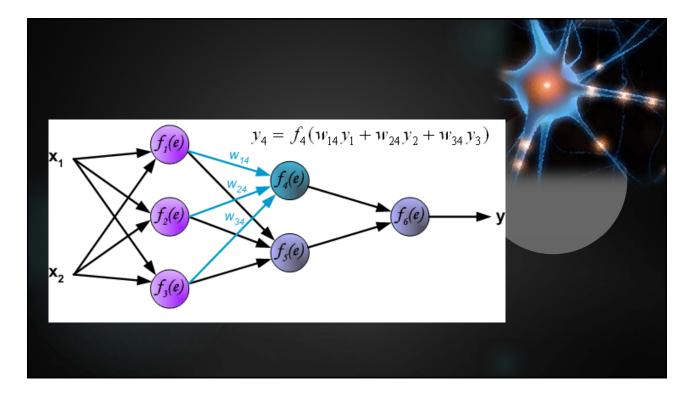
Reverse Mode Differentiation

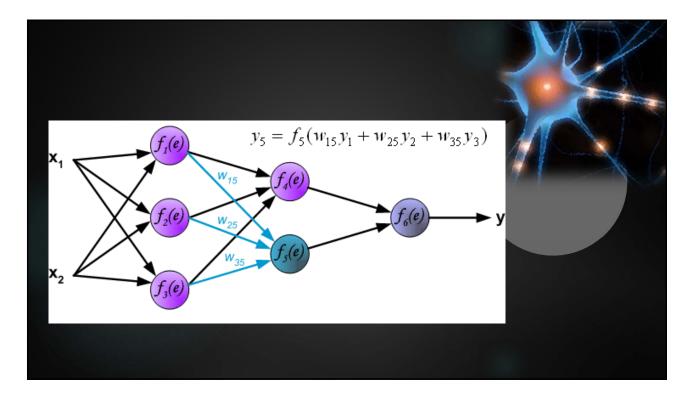
- Application of the chain-rule from calculus
- Can view this at lowest level—computation graph
 - Follow graph of operators (plus, multiply, parameter, variable, etc.) & get partial derivatives using sub-rules (sum rule, product rule, etc.)
 - Complex but highly flexible
- Can view this at level of PEs—neuronal graph
 - Follow graph of PEs
 - Limited flexibility, but simple to understand when starting off
- This tutorial shall follow latter approach for pedagogical purposes
 - ▶ Need another tutorial to fully develop arbitrary computation graphs

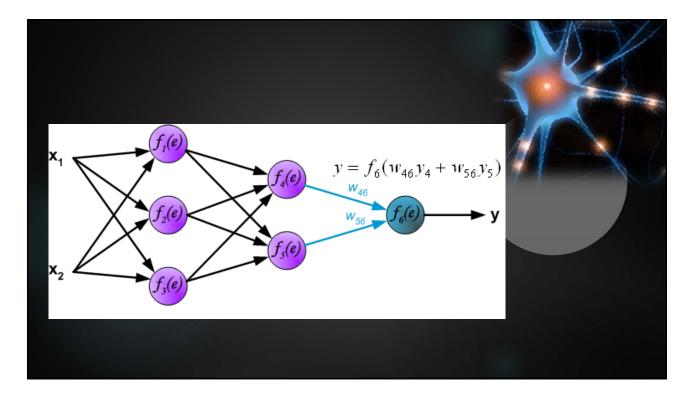


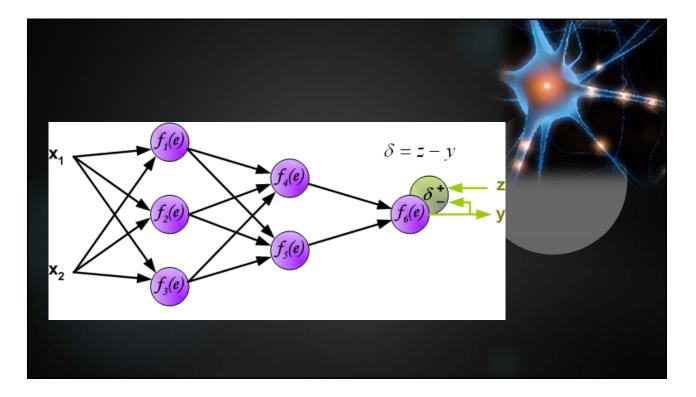


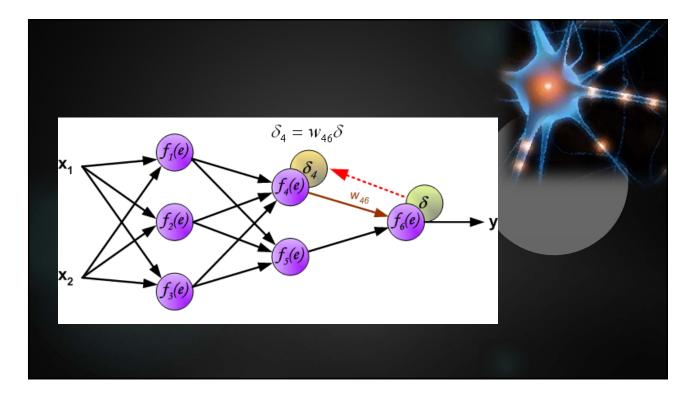


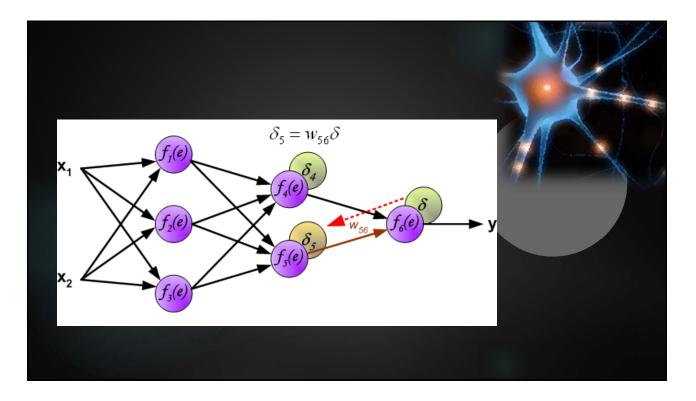


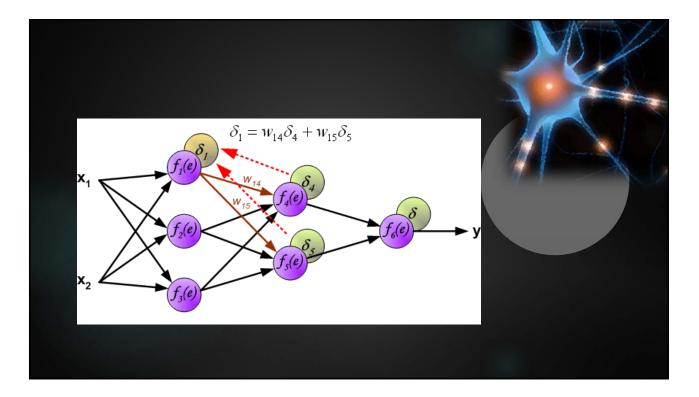


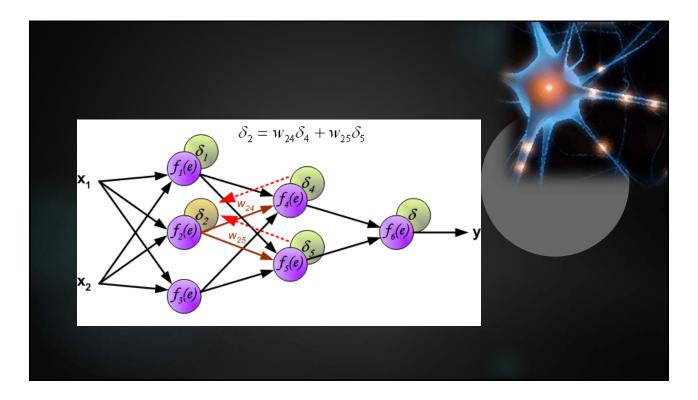


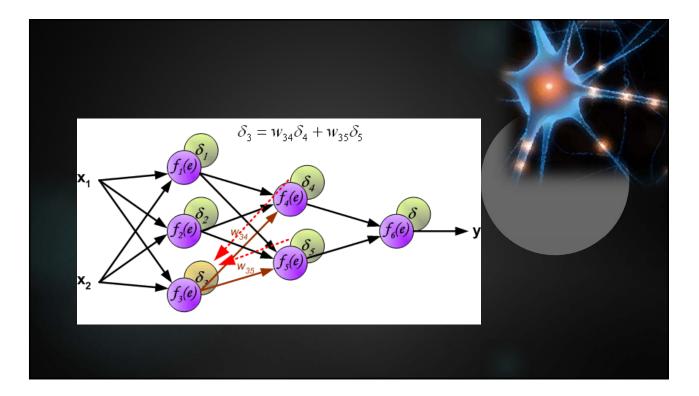


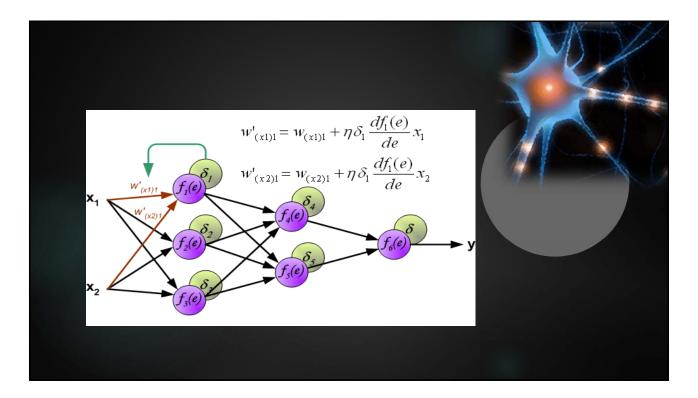


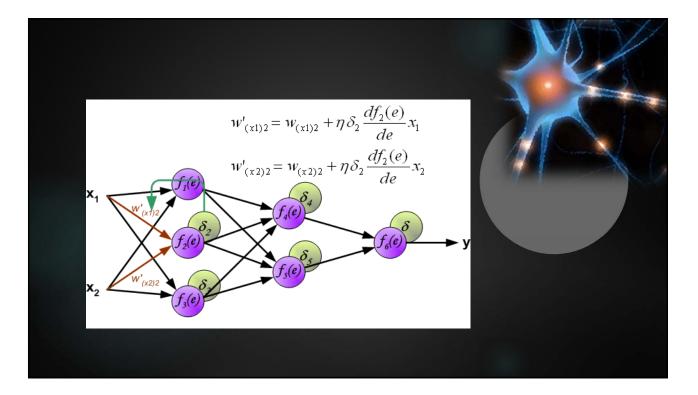


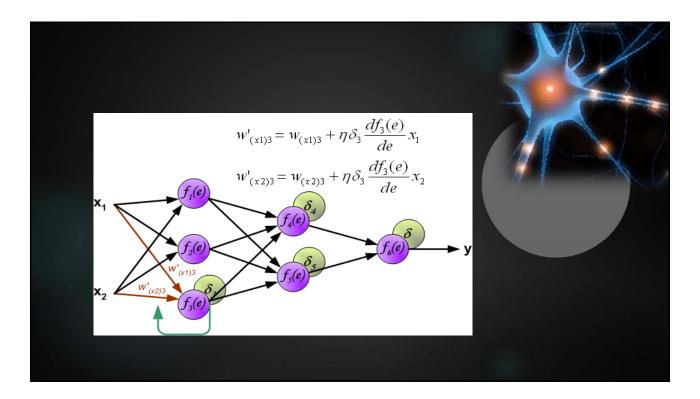












The Vanishing Gradient Problem

- Solving credit assignment problem with back-propagation too difficult
 - Difficult to know how much importance to accord to remote inputs (Bengio et al., 1994)
 - Information passed through a chain of multiplications back through network
 - Any value slightly less than 1 in hadamard product, and derivative signal quickly shrinks to useless values
 - Learning long-term dependencies in temporal sequences becomes near impossible
- Complementary problem: Exploding gradients
 - Any value greater than 1 in hadamard, derivative signal increases dramatically (numerical overflow)

Parameter Optimization

HOW TO USE GRADIENTS TO UPDATE THE ARCHITECTURE

Optimization Schemes

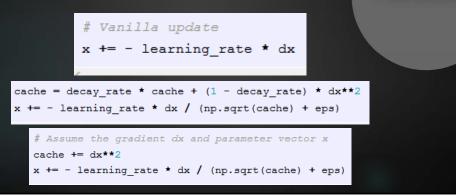
- Steepest (mini-batch) gradient descent
 - Use an estimator (i.e., back-prop) to get gradient, update parameters
 - Also referred to as stochastic gradient descent (SGD)
- Parameter initialization
- Modifications:
 - ▶ Momentum
 - Regularization terms (L1, L2, DataGrad)
 - Gradient clipping & parameter renormalization
 - Drop-out
 - ► Alternative optimizers

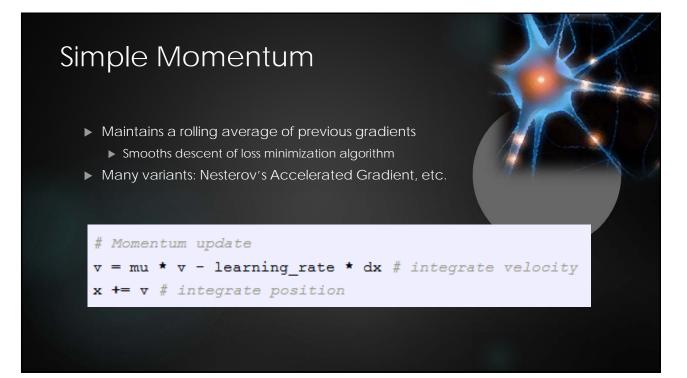
Parameter Initialization

- Simple distributional schemes
 - ► Fan-in Uniform
 - ▶ Uniform distribution scaled by square root of (2 / # inputs to layer)
 - Gaussian
 - ► Gaussian distribution centered @ 0 (usually w/ variance <= 1)
 - ▶ Fan-in Gaussian
 - Gaussian distribution scaled by square root of (2 / # inputs to layer)

Steepest Gradient Descent

- ► Simplest update rule
- Combine with early stopping (tracking loss/error on validation set)
 - ► A simple form of regularization (as weights will be smaller)



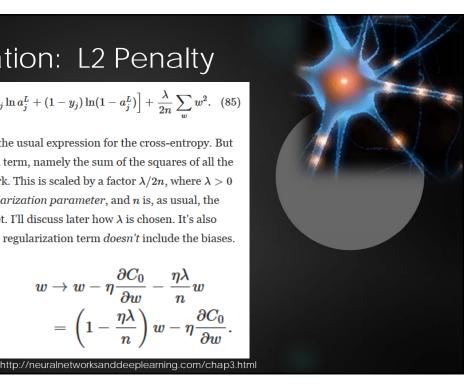


Regularization: L2 Penalty

$$C = -rac{1}{n}\sum_{xj}\left[y_j\ln a_j^L + (1-y_j)\ln(1-a_j^L)
ight] + rac{\lambda}{2n}\sum_w w^2.$$
 (85)

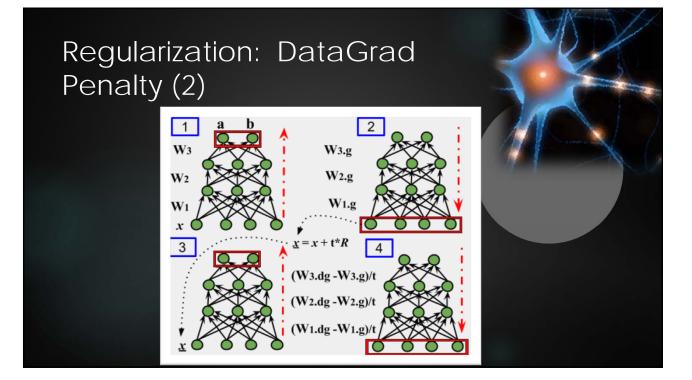
The first term is just the usual expression for the cross-entropy. But we've added a second term, namely the sum of the squares of all the weights in the network. This is scaled by a factor $\lambda/2n$, where $\lambda > 0$ is known as the *regularization parameter*, and *n* is, as usual, the size of our training set. I'll discuss later how λ is chosen. It's also worth noting that the regularization term *doesn't* include the biases.

$$egin{aligned} &w o w-\etarac{\partial C_0}{\partial w}-rac{\eta\lambda}{n}w\ &=\left(1-rac{\eta\lambda}{n}
ight)w-\etarac{\partial C_0}{\partial w}. \end{aligned}$$



Regularization: DataGrad Penalty (1)

- Blind-spot problem—can trick neural nets into making incorrect prediction by perturbing input data
 - Prominent in images
 - Coined "adversarial" samples
- Can employ methods for building robustness against adversarial samples into any data problem
 - Can improve generalization
 - Similar to data augmentation (creating artificial additional images to increase data size)
 - Potentially "sees" more of the underlying data manifold
- DataGrad: an "adversarial" prior (Ororbia et al., 2016)

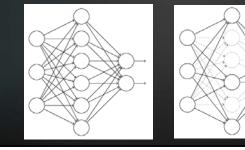


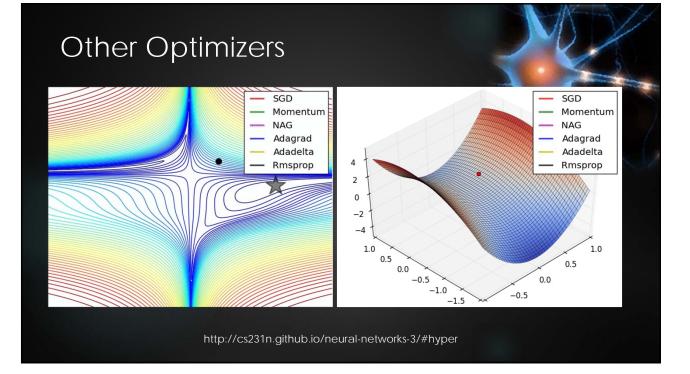
Gradient Clipping & Parameter Renormalization

- Largely resolves exploding gradients problem
 - Simply threshold magnitudes of each dimension of gradient to some reasonable value (i.e., 1 or 5)
 - Can combine this with other tricks (such as "skipping over" bad gradients)
- Track norm of parameters and rescale by normalizing values of gradient by norm
 - Must cross-validate norm threshold

Drop-out

- Each iteration (within an epoch), simply omit some units with a given probability (binary masks)
 - ► At inference time, simply multiply activations by probability
- In single hidden layer model, equivalent to Bayesian model averaging
- ► A form of architectural regularization
 - Controls for overfitting (for models with many parameters)





Hyper-parameter Optimization

HOW TO TUNE A LEARNING ARCHITECTURE

Manual & Grid-Search

- Manual Search
 - Explore a few configurations, based on literature/heuristics
 - Select lowest validation loss configuration
- Grid Search
 - Compose an n-dimensional hypercube, where along each axis is a hyper-parameter (length determined by max & min values to explore)
 - Exhaustively calculate loss/error for each configuration (or combination of meta-parameter values) in hypercube
 - Choose lowest error/minimal loss configuration as optimal model
 - Loss/error is calculated on a held-out validation/development set (or in held-out set in cross-fold validation schemes)
 - Will ultimately find optimal model (given coarseness of grid-search), but will take a really long time

Random Search

- Draw k sample configurations from hypercube & calculate validation loss for each (w/o replacement)
 - Repeat 7 trials, can use optimal of each trial to inform subsequent trials
 - Can "guide" or "target" next set of random samples based on best last found point
 - A more stochastic search
- Surprisingly effective, moreso than manual search & faster than grid search

Bayesian Optimization: Meta Machine Learning

- Use machine learning to do your research for you...
 - Sequential Model Optimization (SMO)
 - Gaussian Processes for surface-response modeling
 - Gradient-based: Use another neural network
 - ▶ How do we tune this higher-level parametric model?
 - ▶ Meta-meta-meta-....-machine learning??
- ▶ High-level idea:
 - Build a meta-model (with some prior that encodes intuition about hyperparameter space)
 - Draw samples from space (i.e., run a few configurations of your model)
 - Update your meta-model using these samples
 - ▶ Your meta-model selects next best point to evaluate
 - ▶ Balancing criterion such as minimal error and minimal compute time

Data Pre-processing

HOW TO PREPARE DATA FOR TRAINING A NEURAL ARCHITECTURE

Process of Vectorization

- ► Feature transformations
 - Standardization (0 mean, unit variance)
 - ▶ Re-scaling (to range of [0,1])
- Surface statistics representation, or Bag of Words (BOW)
 - ▶ Binary occurrence (multi-hot vector)
 - ► Term frequency
 - ► Term Frequency Inverse Document Frequency (TF-IDF)
- Context window modeling (beyond scope of this tutorial)
 - ► Encode a target word and its surrounding context as a multi-hot vector
 - ▶ Word2Vec: Skip-Gram, Continuous Bag of Words (CBOW)
- Sequence window modeling (beyond scope of this tutorial)
 - Encode a sequence or ordered inputs as a 3D tensor, or a vector of matrices, where each matrix is a vector of one-hot encodings
 - Good for temporal models like recurrent neural architectures

BOW Modeling (Text)

Process:

- Apply any string transforms (lower-casing, stemming, stop-word removal)
- Construct a dictionary V of unique symbols in corpus mapped to a unique integer [0, |V|-1]
- For each document, construct a vector, filling in each index i with a number if symbol at i occurs in dictionary
 - \blacktriangleright Fill in slot with 1 \rightarrow binary presence, frequency in document \rightarrow term counts TF
 - ► Convert to TF-IDF or log(1 + TF) if real-valued representation desired

Context Window Modeling (Text)

- As opposed to BOW modeling, slide a window of fixed or variable size across each document, encoding each word & its surrounding context into multi-hot binary vectors
 - E.g. "The cat sat on the mat." target word = "sat", left context (2) = "The cat", right context (3) = "on the"
 - Train model to predict target word given context or vice versa
 - Can combine this with word-embeddings (from word2vec or GloVE, for example)

An Application: Automatic Content Coding

PUTTING IT TOGETHER IN AN APPLICATION

Content Coding Setup

- From a machine learning perspective, may be posed as a classification problem
 - Becomes semi-supervised at scale (i.e., when you have lots and lots of documents/texts)
- ► General approach:
 - ▶ 1) Come up with themes/categories, starting off as usual
 - 2) Take a representative sample & code it manually
 - > 3) Fit a model to both annotated & non-annotated documents
- ► For labeled dataset D_{train}
 - ▶ *D*-dimensional pattern vectors : $\hat{v} \in (v_0, v_1, ..., v_D)$ with C-dimensional label vectors $\hat{y} \in (y_0, y_1, ..., y_C)$

The (Neural) Modeling Paradigm

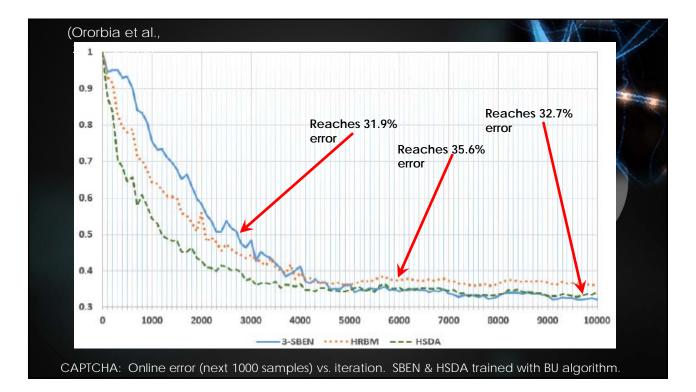
- It's a matter of posing the problem
 - What is the low-level representation of your sample? (i.e., lowlevel feature vectors)
 - Is there an output we are interested in?
 - Regression: a real-valued target
 - Categorization: a multi-class/decision target
- How much data do you have?
 - ► More data is better! (MNIST is 60K)
 - Only a small sample? Go with Bayesian Neural Networks!
- ▶ What kind of hardware do you have?
 - Multi-CPU settings
 - ► GPUs

Semi-supervised Neural Architecture

- ▶ We design a multi-objective optimization problem:
 - $\blacktriangleright L(x, y, u) = \gamma * L(x, y) + \beta * L(u), \text{ setting } \gamma = 1 \& \beta = (0, 1]$
- We will demo a simple approach: Entropy-Regularization (i.e., self training)
 - Use a deep rectifier network, with drop-out, trained using its own predictions for unlabeled samples
 - Anneal weight β applied to unlabeled loss function
- Experiment for this tutorial: performance as function of proportion of labeled samples

Some D	emo Result	S	
CNAE-9	Supervised	Semi-Supervised (= 0.15)	
25 % Labeled	0.1712963	0.13425928	
75 % Labeled	0.05092591	0.0462963	
Fully Labeled	0.037037015	N/A	
LETTERS	Supervised	Semi-Supervised (= 0.15)	
25 % Labeled	0.13046736	0.11822045	
75 % Labeled	0.07398152	0.091477156	
Fully Labeled	0.075231194	N/A	
http	os://github.com/ago109/SE	P-BRIMS-2016-Tutorial.git	

	С	APTCHA char	acter categor	ization perfor	mance.	A SZ	
		Error	Precision	Recall	F1-Score	1076	
(Ororbia et al., 2015, ECML) 2.1 HR	MaxEnt		0.535 ± 0.011			10	
	SVM		0.564 ± 0.010			•	
		0.365 ± 0.011					
	HRBM [20] 5-SBEN		$\begin{array}{c} 0.643 \pm 0.010 \\ \textbf{0.681} \pm \textbf{0.009} \end{array}$				
	5-HSDA		0.650 ± 0.003				
					01000 1 01011	A second second	
		Stanford	d OCR perforn				
		Error	Precision	Recall	F1-Score	Note: SBEN &	
	MaxEnt		0.508 ± 0.006			HSDA were	
	SVM		0.504 ± 0.004			trained greedi	
		0.387 ± 0.009					
	HRBM [20] 3-SBEN		$\begin{array}{c} 0.565 \pm 0.009 \\ \textbf{0.602} \pm \textbf{0.009} \end{array}$				
	3-HSDA		0.546 ± 0.007				
WEBKB text classification performance.							
		recision Recall F			Recall F1-Score		
	MaxEnt 0.510	0.386 0.387	0.384 3-SBEN		0.770 0.769 0.780 0.765		
	SVM 0.524	0.404 0.378	0.387 3-HSDA	0.219 0.757	0.780 0.765		



Ways to Improve Model

- More data (especially more labeled samples)
- Use drop-out
- ▶ Try different number of hidden layers & sizes
- Grid-search learning rate and β
 - Anneal β (low at start, high towards end)
 - Anneal learning rate (low at towards end)
- ▶ Use a different optimizer (i.e., AdaDelta, AdaGrad, RMSProp, etc.)
 - Adapt learning rate automatically

Other Approaches

- ► Entropy-Regularization is only a simple neural approach
 - More principled, joint modeling frameworks
 - Deep hybrid models (Ororbia et al., 2015....)
 - Semi-supervised Ladder Networks
 - Manifold Tangent Classifier
- Do not have to use neural models, sometimes simpler is better...
 - ► Transductive SVMs (use test set in training)
 - Self-training SVMs ((via entropy regularization))
 - ▶ Naïve Bayes via Expectation Maximization (McCallum ...)

Resource & References

FOR FURTHER, PERSONAL EXPLORATION (CURRENTLY UPDATING...)

Resources

- ► Deep Learning Hub:
 - ▶ <u>http://deeplearning.net</u>
- ► Deep Learning Book (MIT Press):
 - ▶ <u>http://www.deeplearningbook.org/</u>
- Deep Learning frameworks:
 - Theano (has automatic differentiation built-in naturally)
 http://deeplearning.net/software/theano/
 - ► TensorFlow
 - https://www.tensorflow.org
 - Keras (good for starting out)
 - http://keras.io

Bibliography

- Anderson, J. A., Silverstein, J. W., Ritz, S. A., & Jones, R. S. (1977). Distinctive features, categorical perception, and probability learning: some applications of a neural model. *Psychological Review* 84(5), 413.
- Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. (2007). Greedy layer-wise training of deep networks. Advances in Neural Information Processing Systems, 19, 153.
- Bengio, Yoshua, Patrice Simard, and Paolo Frasconi. "Learning long-term dependencies with gradient descent is difficult." Neural Networks, IEEE Transactions on 5.2 (1994): 157-166.
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. *Machine Learning*, 20(3), 273–297.
- Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
- Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological Cybernetics*, 36(4), 193–202.
- Hastad, J. (1987). Computational limitations of small-depth circuits. MIT press. Retrieved from http://dl.acm.org/citation.cfm?id=SERIES9056.27031
- Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

Bibliography

- Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02), 107–115.
- Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural Networks*, 2(5), 359–366.
- Le, Quoc V., Navdeep Jaitly, and Geoffrey E. Hinton. "A simple way to initialize recurrent networks of rectified linear units." arXiv preprint arXiv:1504.00941 (2015).
- Minsky, M., & Papert, S. (1969). Perceptions. MIT Press.
- Ororbia II, Alexander G., Giles, C. Lee, and Kifer, Daniel. (2016) Unifying Adversarial Training Algorithms with Flexible Deep Data Gradient Regularization. arXiv preprint arXiv: 1601.07213 [cs.LG].
- Rosenblatt, F. (1957). The perceptron -- a perceiving and recognizing automaton (No. 85-460-1). Buffalo, NY: Cornell Aeronautical Laboratory.
- Rummelhart, Hinton, & McClelland. (1986). A General Framework for Parallel Distributed Processing. Parallel Distributed Processing, 1(2).
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. *Nature*, 323(6088), 533–536. doi:10.1038/323533a0
- Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. *The Journal of Machine Learning Research*, 11, 3371–3408.